Implementasi Dashboard Untuk Visualisasi Data Penerimaan Mahasiswa Baru Studi Kasus : Universitas Kristen Duta Wacana

Authors

  • Vanesha Glorya Priskilla,  Sistem Informasi, Universitas Kristen Duta Wacana
  • (*) Yetli Oslan,  Datawarehouse & Datamining
  • Lussy Ernawati,  Sistem Informasi, Universitas Kristen Duta Wacana

(*) Corresponding Author

DOI:

https://doi.org/10.21460/jutei.2021.52.234

Keywords:

dashboard, data warehouse, data visualization

Abstract

New Student Admissions activities at an University needs to be monitored to determine the performance of Admission and Promotion. Admission data can be processed and analyzed to determine the expo destination schools, promotion locations, and appropriate potential areas. In addition, the results of Admission data processing can be used to determine the fluctuation of enthusiasts in the Majors from previous periods or the comparison of the number of enthusiasts between Majors. For that reason we need a dashboard as a tool to help user for analyze, monitor and be taken into consideration in making strategic decisions related to Admission activities. The implemented dashboard consists of a collection of information that is visualized in graphs and numbers. The users of the dashboard are employees of the Admissions and Promotion Unit, Head of Majors for each department, and Administrators.

                  There are 6 dimensions displayed in the dashboard, namely time, region, test route, path transfer, prospective students, and school origin. The data of new student admissions is processed and stored into the data warehouse through the ETL process. Furthermore, the data warehouse is used as data storage for the implementation of a web-based dashboard application using the PHP programming language. The implemented dashboard consists of Admission information that is visualized into charts and numbers. the graphs that used in PMB data visualization include bar charts, doughnut charts, pie charts, column charts, line charts, and map charts.

References

I. Kurniawati, R. E. Indrajit dan M. Fauzi, “Peran Bussines Intelligence Dalam Menentukan Strategi Promosi Penerimaan Mahasiswa Baru,” IKRAITH INFORMATIKA, pp. 70-79, 2017.

Universitas Kristen Duta Wacana, “Admisi & Promosi,” 2017. [Online].

S. Few, Dashboard Confusion, Intelligent Enterprise, 2004.

A. R. J. C. L. L. T. K. U. Zagorecki, “Executive Dashboard Systems For Emergency Management,” Communication Journal, pp. 82-89, 2012.

S. Few, Information Dashboard Design, USA: O‟Reilly, 2005.

Data Folks Indonesia, “Data Visualisasi : Definisi (Part 1),” September 2019. [Online]. Available: https://medium.com/data-folks-indonesia/data-visualisasi-definisi-part-1-63d68599be29. [Diakses 06 March 2020].

FineReport Global, “16 Jenis Grafik Terpopuler untuk Visualisasi Data,” 17 December 2019. [Online]. Available: https://www.finereport.com/en/data-visualization/16-jenis-grafik-terpopuler-untuk-visualisasi-data.html. [Diakses 7 March 2020].

R. Kimball dan J. Caserta, The Data Warehouse ETL Toolkit: pratical techniques for extracting, cleaning, conforming, and deliver data, Wiley Publishing, 2004.

A. Vaisman dan Z. Esteban, Data Warehouse Systems: Design and Implementation, Springer, 2014.

W. H. Inmon, Tech Topic: What is Data Warehoouse, Prism Solution, 1995.

E. G. Mallach, “Decision Support and Data Warehouse Systems,” McGraw-Hill, New York, 2000.

J. Han dan M. Kamber, “Data Mining:Concepts and Techniques,” Morgan Kaufmann Publisher, San Francisco, 2006.

R. Kimball dan M. Ross, The Kimball Group Reader: Relentlessly Practical Tools for Data Warehousing and Business Intelligence, Indianapolis: Wiley Publishing, Inc., 2010.

PT Softbless Solutions, “ETL (Extract Transform Load),” 2016. [Online]. Available: https://www.softbless.com/ETL-Indonesia.

Published

2021-10-31

How to Cite

[1]
V. G. Priskilla, Y. Oslan, and L. Ernawati, “Implementasi Dashboard Untuk Visualisasi Data Penerimaan Mahasiswa Baru Studi Kasus : Universitas Kristen Duta Wacana”, JUTEI, vol. 5, no. 2, pp. 11–23, Oct. 2021.