Penelitian Artificial Intelligence untuk Satelit Komunikasi menggunakan Jaringan Syaraf Tiruan (JST)

Authors

  • (*) Tommy Jonathan Sinaga,  Informatika, STIKOM Tunas Bangsa

(*) Corresponding Author

DOI:

https://doi.org/10.21460/jutei.2024.82.334

Keywords:

Penelitian Artificial Intelligence, Satelit Komunikasi, Jaringan Syaraf Tiruan

Abstract

Satellite Communications offers the promise of periodic continuous service in uncovered and covered areas, with service scalability. However, several issues must be addressed first to realize these benefits, such as resource management, network control, network security, spectrum management, and satellite energy usage are more difficult compared to terrestrial networks. Meanwhile, artificial intelligence (AI), which includes deep machine learning, and security learning continues to grow as a research field and has shown a wide range of results in various applications, including wireless communications. In particular, the application of AI to various aspects of satellite communications is showing excellent potential, including beam- hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detection, interference management, remote sensing, behavioral modeling, space-air-ground integration, and energy management. This work provides an overview of AI and its diverse sub-fields, and modern algorithms. Some of the problems encountered in various aspects of satellite communication systems are discussed, and proposed and potential AI-based solutions are presented. Finally, an outlook on the field is described, with future steps expected.

Author Biography

Tommy Jonathan Sinaga, Informatika, STIKOM Tunas Bangsa

Tommy Jonathan Sinaga (born April 4, 1999) in Pematangsiantar, North Sumatra, is an Indonesian writer. He is of Batak Toba descent. The son of Mr. Sinaga and Rosmawaty Sitohang. Tommy is the second child out of four siblings. He rose to fame in 2016. Tommy started his career as a musician, entrepreneur, and writer with a personal blog. In 2022. In his writings, he often tells stories about the romance of life.

It is to entertain people who use social media so that they understand about life. Tommy also creates professional techno music. In 2020, Tommy founded a company with his two friends, Frengky Ardian Batubara and Kristian Andreas Sinaga, a record company named "Nattha Records" which was established in 2020 in Pematangsiantar.

Sources:

* Profil Tommy Jonathan Sinaga Penulis Novel Batak Toba Lengkap dengan Karya Musiknya (Dailypost.id)

* Biodata & Profil Tommy Jonathan Sinaga: Agama, Keluarga, Pacar, dan Perjalanan Karir (Era-post.com)

* Profil Tommy Jonathan Sinaga Penulis Cerita Novel Batak Toba Lengkap dengan Karya Musiknya (Pikiran-rakyat.com)

* Yuk Kenali Tommy Jonathan Sinaga, Penulis Cerita Batak Toba (RCTIPlus.com)

* Profil artis ganteng Tommy Jonathan Sinaga Pembuat Novel Inspirasi Batak Toba (Portibinews.com)

* Tommy Jonathan Sinaga Penulis Cerita Inspirasi Batak Toba (Batakpost.com)

References

G. Maral and M. Bousquet, Satellite communications systems. Systems, techniques and technology. 2009. doi: 10.1002/9780470834985.

F. Rinaldi et al., “Non-Terrestrial Networks in 5G & Beyond: A Survey,” IEEE Access, vol. 8, pp. 165178–165200, 2020, doi: 10.1109/ACCESS.2020.3022981.

P. Chowdhury, M. Atiquzzaman, and W. Ivancic, “Handover schemes in satellite networks: State-of-the-art and future research directions.,” IEEE Communications Surveys and Tutorials, vol. 8, pp. 2–14, 2006.

P. Chini, G. Giambene, and S. Kota, “A survey on mobile satellite systems,” Int. J. Satellite Communications Networking, vol. 28, pp. 29–57, 2009, doi: 10.1002/sat.941.

A. Byman et al., “MIMO for Mobile Satellite Digital Broadcasting: From Theory to Practice,” IEEE Transactions on Vehicular Communications, vol. 65, 2015, doi: 10.1109/TVT.2015.2462757.

Y. Zhang, S. Zhao, H. Ji, Y. Zhang, Y. Shen, and X. Jiang, “A Survey of Secure Communications for Satellite Internet Based on Cryptography and Physical Layer Security,” IET Inf Secur, vol. 2023, pp. 1–15, 2023, doi: 10.1049/2023/5604802.

G. Maral and M. Bousquet, Satellite communications systems. Systems, techniques and technology. 2009. doi: 10.1002/9780470834985.

F. Rinaldi et al., “Non-Terrestrial Networks in 5G & Beyond: A Survey,” IEEE Access, vol. 8, pp. 165178–165200, 2020, doi: 10.1109/ACCESS.2020.3022981.

P. Chowdhury, M. Atiquzzaman, and W. Ivancic, “Handover schemes in satellite networks: State-of-the-art and future research directions.,” IEEE Communications Surveys and Tutorials, vol. 8, pp. 2–14, 2006.

P. Chini, G. Giambene, and S. Kota, “A survey on mobile satellite systems,” Int. J. Satellite Communications Networking, vol. 28, pp. 29–57, 2009, doi: 10.1002/sat.941.

A. Byman et al., “MIMO for Mobile Satellite Digital Broadcasting: From Theory to Practice,” IEEE Transactions on Vehicular Communications, vol. 65, 2015, doi: 10.1109/TVT.2015.2462757.

Y. Zhang, S. Zhao, H. Ji, Y. Zhang, Y. Shen, and X. Jiang, “A Survey of Secure Communications for Satellite Internet Based on Cryptography and Physical Layer Security,” IET Inf Secur, vol. 2023, pp. 1–15, 2023, doi: 10.1049/2023/5604802.

R. Radhakrishnan, W. Edmonson, F. Afghah, R. Rodriguez-Osorioc, F. a, and S. Burleigh, “Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View,” 2016.

C. Niephaus, M. Kretschmer, and G. Ghinea, “QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art,” IEEE Communications Surveys & Tutorials, vol. 18, p. 1, 2016, doi: 10.1109/COMST.2016.2561078.

Y. Liu, X. Wang, S. Liao, Q. Sun, S. Feng, and L. Guo, “DRL-enabled cooperative free-space optical communication system with an elastic optical splitter,” Journal of Optical Communications and Networking, vol. 16, 2024, doi: 10.1364/JOCN.503484.

B. Akcali Gur and J. Kulesza, “Activated! Public dissent, internet access and satellite broadband,” Internet Policy Review, 2023.

C. Liu, X. Li, Y. Xue, W. Lu, and C. Zhang, “Development and applications of an integrated space-air-ground observation network in natural resource monitoring and supervision,” E3S Web of Conferences, vol. 520, p. 4018, 2024, doi: 10.1051/e3sconf/202452004018.

J. Kumar, S. Chobe, S. Nikam, S. Zanwar, M. Borawake, and D. Hirolikar, “Introduction of machine learning with applications to communication system,” Journal of Autonomous Intelligence, vol. 6, 2023, doi: 10.32629/jai.v6i3.1244.

N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Al-Naffouri, and M.-S. Alouini, “CubeSat Communications: Recent Advances and Future Challenges,” 2019. doi: 10.36227/techrxiv.12179397.

S. Networks, “Retracted: Application of Data Encryption Technology in Network Information Security Sharing,” Security and Communication Networks, vol. 2023, p. 1, 2023, doi: 10.1155/2023/9868457.

M. Patil and D. Vidyavathi, “Application o f Advanced Machine Learning and Artificial Neural Network Methods in Wireless Sensor Networks Based Applications,” Int J Eng Adv Technol, vol. 11, pp. 103–109, 2022, doi: 10.35940/ijeat.C3394.0211322.

V. Jain, J. Sheth, E. Mogaji, and A. Ambika, “Artificial Intelligence in Customer Service: An Introduction to the Next Frontier to Personalized Engagement,” 2023, pp. 1–11. doi: 10.1007/978-3-031-33898-4_1.

J. Zhao and Y. Wenhan, “Quantum Multi-Agent Reinforcement Learning as an Emerging AI Technology: A Survey and Future Directions,” 2023. doi: 10.36227/techrxiv.24563293.

J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia, “Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey,” Ad Hoc Networks, p. 101913, 2019, doi: 10.1016/j.adhoc.2019.101913.

N. Kato et al., “Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence,” IEEE Wirel Commun, vol. PP, pp. 1–8, 2019, doi: 10.1109/MWC.2018.1800365.

B. Boser, I. Guyon, and V. Vapnik, “A Training Algorithm for Optimal Margin Classifier,” Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, vol. 5, 1996, doi: 10.1145/130385.130401.

T. Adugna, A. Ramu, and A. Haldorai, “A Review of Pattern Recognition and Machine Learning,” Journal of Machine and Computing, pp. 210–220, 2024, doi: 10.53759/7669/jmc202404020.

Y. Bahrambeigi, “Deep-learning-in-Python,” 2024. doi: 10.13140/RG.2.2.13211.23841.

J. Cervantes, F. García-Lamont, L. Rodríguez, and A. Lopez-Chau, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, 2020, doi: 10.1016/j.neucom.2019.10.118.

Y. Wang, H. Yao, and S. Zhao, “Auto-Encoder Based Dimensionality Reduction,” Neurocomputing, vol. 184, 2015, doi: 10.1016/j.neucom.2015.08.104.

C. Zhou and R. Paffenroth, “Anomaly Detection with Robust Deep Autoencoders,” 2017, pp. 665–674. doi: 10.1145/3097983.3098052.

J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press, 2016, 800 pp, ISBN: 0262035618,” Genet Program Evolvable Mach, vol. 19, 2017, doi: 10.1007/s10710-017-9314-z.

C. Doersch, “Tutorial on Variational Autoencoders,” 2016.

I. Goodfellow et al., “Generative Adversarial Nets,” ArXiv, 2014.

F. Olaoye, K. Potter, and L. Doris, “Generative Adversarial Networks (GANs) and their Applications,” Network, 2024.

H. Sharma, H. Kumar, and R. Pandey, “Introduction of Reinforcement Learning and Its Application Across Different Domain,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, pp. 98–104, 2023, doi: 10.32628/CSEIT239066.

C. Han, L. Huo, X. Tong, H. Wang, and X. Liu, “Spatial Anti-Jamming Scheme for Internet of Satellites Based on the Deep Reinforcement Learning and Stackelberg Game,” IEEE Trans Veh Technol, vol. PP, p. 1, 2020, doi: 10.1109/TVT.2020.2982672.

L. Lei, E. Lagunas, Y. Yuan, M. Kibria, S. Chatzinotas, and B. Ottersten, “Beam Illumination Pattern Design in Satellite Networks: Learning and Optimization for Efficient Beam Hopping,” IEEE Access, vol. PP, p. 1, 2020, doi: 10.1109/ACCESS.2020.3011746.

G. Cocco, T. Cola, M. Angelone, Z. Katona, and S. Erl, “Radio Resource Management Optimization of Flexible Satellite Payloads for DVB-S2 Systems,” IEEE Transactions on Broadcasting, vol. PP, 2017, doi: 10.1109/TBC.2017.2755263.

X. Hu, Y. Zhang, X. Liao, Z. Liu, W. Wang, and F. M. Ghannouchi, “Dynamic Beam Hopping Method Based on Multi-Objective Deep Reinforcement Learning for Next Generation Satellite Broadband Systems,” IEEE Transactions on Broadcasting, vol. 66, pp. 630–646, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:213421690

S. Bae, S. Kim, and J. Kim, “Efficient frequency-hopping synchronization for satellite communications using dehop-rehop transponders,” IEEE Trans Aerosp Electron Syst, vol. 52, pp. 261–274, 2016, doi: 10.1109/TAES.2015.150062.

L. Xiao, D. Jiang, D. Xu, H. Zhu, Y. Zhang, and H. V. Poor, “Two-Dimensional Antijamming Mobile Communication Based on Reinforcement Learning,” IEEE Trans Veh Technol, vol. PP, p. 1, 2018, doi: 10.1109/TVT.2018.2856854.

S. Lee, S. Kim, M. Seo, and D. Har, “Synchronization of Frequency Hopping by LSTM Network for Satellite Communication System,” IEEE Communications Letters, vol. PP, p. 1, 2019, doi: 10.1109/LCOMM.2019.2936019.

C. Han, A. Liu, H. Wang, L. Huo, and X. Liang, “Dynamic Anti-Jamming Coalition for Satellite-Enabled Army IoT: A Distributed Game Approach,” IEEE Internet Things J, vol. PP, p. 1, 2020, doi: 10.1109/JIOT.2020.2991585.

Y. Bie, L. Wang, Y. Tian, and Z. Hu, “A Combined Forecasting Model for Satellite Network Self-Similar Traffic,” IEEE Access, vol. PP, p. 1, 2019, doi: 10.1109/ACCESS.2019.2944895.

S. Daskalaki and C. Katris, “Comparing Forecasting Approaches for Internet Traffic,” Expert Syst Appl, vol. 42, pp. 8172–8183, 2015, doi: 10.1016/j.eswa.2015.06.029.

X. Pan, W. Zhou, Y. Lu, and N. Sun, “Prediction of Network Traffic of Smart Cities Based on DE-BP Neural Network,” IEEE Access, vol. PP, p. 1, 2019, doi: 10.1109/ACCESS.2019.2913017.

G.-B. Huang, Q.-Y. Zhu, and C. Siew, “Extreme learning machine: A new learning scheme of feedforward neural networks,” in IEEE International Conference on Neural Networks - Conference Proceedings, 2004, pp. 985–990 vol.2. doi: 10.1109/IJCNN.2004.1380068.

M. Piacentini and F. Rinaldi, “Path loss prediction in urban environment using learning machines and dimensionality reduction techniques,” Computational Management Science, vol. 8, pp. 371–385, 2011, doi: 10.1007/s10287-010-0121-8.

Y. Zhang, J. Wen, G. Yang, Z. He, and X. Luo, “Air-to-Air Path Loss Prediction Based on Machine Learning Methods in Urban Environments,” Wirel Commun Mob Comput, vol. 2018, pp. 1–9, 2018, doi: 10.1155/2018/8489326.

Y. Zhang, J. Wen, G. Yang, Z. He, and J. Wang, “Path Loss Prediction Based on Machine Learning: Principle, Method, and Data Expansion,” Applied Sciences, vol. 9, p. 1908, 2019, doi: 10.3390/app9091908.

O. Ahmadien, H. Ates, T. Baykas, and B. Gunturk, “Predicting Path Loss Distribution of an Area From Satellite Images Using Deep Learning,” IEEE Access, vol. PP, p. 1, 2020, doi: 10.1109/ACCESS.2020.2985929.

T. Yairi, N. Takeishi, T. Oda, Y. Nakajima, N. Nishimura, and N. Takata, “A Data-Driven Health Monitoring Method for Satellite Housekeeping Data Based on Probabilistic Clustering and Dimensionality Reduction,” IEEE Trans Aerosp Electron Syst, vol. PP, p. 1, 2017, doi: 10.1109/TAES.2017.2671247.

P. Wan, Y. Zhan, and W. Jiang, “Study on the Satellite Telemetry Data Classification Based on Self-Learning,” IEEE Access, vol. PP, p. 1, 2019, doi: 10.1109/ACCESS.2019.2962235.

L. F. Rezende et al., “Survey and prediction of the ionospheric scintillation using data mining techniques,” Space Weather, vol. 8, p. S06D09, 2010, doi: 10.1029/2009SW000532.

R. Imam and F. Dovis, “Distinguishing Ionospheric Scintillation from Multipath in GNSS Signals Using Bagged Decision Trees Algorithm,” 2020. doi: 10.1109/WiSEE44079.2020.9262699.

Q. Liu, J. Yang, C. Zhuang, A. Barnawi, and B. Alzahrani, “Artificial Intelligence Based Mobile Tracking and Antenna Pointing in Satellite-Terrestrial Network,” IEEE Access, vol. PP, p. 1, 2019, doi: 10.1109/ACCESS.2019.2956544.

P. Henarejos, M. Á. Vázquez, and A. I. Pérez-Neira, “Deep Learning For Experimental Hybrid Terrestrial and Satellite Interference Management,” 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, 2019, [Online]. Available: https://api.semanticscholar.org/CorpusID:174801257

H. Ates, M. Hashir, T. Baykas, and B. Gunturk, “Path Loss Exponent and Shadowing Factor Prediction From Satellite Images Using Deep Learning,” IEEE Access, vol. PP, p. 1, 2019, doi: 10.1109/ACCESS.2019.2931072.

N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data,” IEEE Geoscience and Remote Sensing Letters, vol. PP, pp. 1–5, 2017, doi: 10.1109/LGRS.2017.2681128.

S. Fathima, A. Kumar, A. Pratap, and S. Raoof, “Object Recognition and Detection in Remote Sensing Images: A Comparative Study,” 2020, pp. 1–5. doi: 10.1109/AISP48273.2020.9073614.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

J. Lu, Y. Chen, and R. He, “A Learning-Based Approach for Agile Satellite Onboard Scheduling,” IEEE Access, vol. PP, p. 1, 2020, doi: 10.1109/ACCESS.2020.2968051.

R. Mital, K. Cates, J. Coughlin, and G. Ganji, “A Machine Learning Approach to Modeling Satellite Behavior,” 2019, pp. 62–69. doi: 10.1109/SMC-IT.2019.00013.

A. Ahmed, A. Salama, H. Ibrahim, M. Sayed, and S. Yacout, “Prediction of Battery Remaining Useful Life on Board Satellites Using Logical Analysis of Data,” 2019, pp. 1–8. doi: 10.1109/AERO.2019.8741717.

N. Kato et al., “Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence,” IEEE Wirel Commun, vol. 26, pp. 140–147, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:51924560

J.-H. Lee, J. Park, M. Bennis, and Y.-C. Ko, “Integrating LEO Satellite and UAV Relaying via Reinforcement Learning for Non-Terrestrial Networks,” 2020.

Q. Chao, H. Yao, F. Yu, F. Xu, and C. Zhao, “Deep Q-Learning Aided Networking, Caching, and Computing Resources Allocation in Software-Defined Satellite-Terrestrial Networks,” IEEE Trans Veh Technol, 2019, doi: 10.1109/TVT.2019.2907682.

V. Kothari, E. Liberis, and N. D. Lane, “The Final Frontier: Deep Learning in Space,” Proceedings of the 21st International Workshop on Mobile Computing Systems and Applications, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:210932614

H. Tsuchida et al., “Efficient Power Control for Satellite-Borne Batteries Using Q-Learning in Low-Earth-Orbit Satellite Constellations,” IEEE Wireless Communications Letters, vol. 9, pp. 809–812, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:212802795

G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy optimization for MEC enhanced SAT-IoT networks,” IEEE Access, vol. PP, p. 1, 2020, doi: 10.1109/ACCESS.2020.2982356.

C. Zhang, N. Zhang, W. Cao, K. Tian, and Z. Yang, “An AI-Based Optimization of Handover Strategy in Non-Terrestrial Networks,” 2020, pp. 1–6. doi: 10.23919/ITUK50268.2020.9303210.

J. Sun, J. Zhang, X. Zhang, and W. Zhou, “A Deep Learning-Based Method for Heat Source Layout Inverse Design,” IEEE Access, vol. 8, p. 1, 2020, doi: 10.1109/ACCESS.2020.3013394.

D. Rodríguez Prado, J. López-Fernández, M. Arrebola, M. Pino, and G. Goussetis, “Wideband Shaped-Beam Reflectarray Design Using Support Vector Regression Analysis,” IEEE Antennas Wirel Propag Lett, vol. PP, p. 1, 2019, doi: 10.1109/LAWP.2019.2932902.

Downloads

Published

2025-02-04

How to Cite

[1]
T. Jonathan Sinaga, “Penelitian Artificial Intelligence untuk Satelit Komunikasi menggunakan Jaringan Syaraf Tiruan (JST)”, JUTEI, vol. 8, no. 2, pp. 71–83, Feb. 2025.