STUDI PENERIMAAN SISTEM MANAJEMEN PENGETAHUAN DI HALO BCA
DOI:
https://doi.org/10.21460/jutei.2018.21.91Keywords:
TAM, Acceptance, Contact Center, KMSAbstract
Contact Center adalah salah satu bentuk Customer Relationship Management, di mana pelanggan dapat berinteraksi dengan perusahaan melalui satu pintu. Contact Center juga berperan terutama sebagai alat bagi perusahaan untuk mengelola pelayanan terhadap pelanggan. Contact Center pada umumnya dioperasikan oleh banyak Agent Contact Center, dan dapat menerima ribuan panggilan telepon tiap harinya, tergantung pada skala perusahaan dan banyaknya pelanggan perusahaan tersebut. Agar dapat melayani pelanggan dengan baik, Agent perlu memahami banyak pengetahuan yang dimiliki perusahaan. Maka dari itu, Agent harus menguasai Knowledge Management System (KMS) yang dimiliki perusahaan. Ketidakmampuan Agent dalam menggunakan KMS akan menjadi masalah bagi operasional Contact Center dan perusahaan. Dalam penelitian ini kami mempelajari penerimaan Halo Info, salah satu bentuk KMS yang digunakan di Halo BCA, salah satu Contact Center perusahaan perbankan terbesar di Indonesia. Kami menggunakan Technology Acceptance Model (TAM) versi 2 yang kami modifikasi, mengunakan total 11 variabel, 31 indikator, dan 12 hipotesis. Instrumen penelitian berupa kuesioner dengan 31 indikator. Kami berhasil mengumpulkan 283 data responden, kemudian menganalisa data tersebut menggunakan PLS-SEM. Hasil penelitian adalah sebagai berikut: Usage Behaviour (UB) dipengaruhi secara signifikan oleh Intention to Use (IU); IU sangat dipengaruhi oleh Perceived Ease of Use (PEU), Perceived Usefulness (PU), dan Subjective Norm (SN); PEU dipengaruhi secara signifikan oleh System Self-Efficacy (SSE) dan Interface Usability (IUSB); PU dipengaruhi secara signifikan oleh Job Relevance (JR) dan PEU, namun tidak dipengaruhi secara signifikan oleh Output Quality (OQ), Image (I), Result Demonstrability (RD), dan SN
References
[2] a Parasuraman, V. a Zeithaml, and L. L. Berry, “SERQUAL: A Multiple-Item scale for Measuring Consumer Perceptions of Service Quality,” J. Retail., vol. 64, p. 28, 1988.
[3] A. Jashapara, Knowledge Management: An Integrated Approach. Pearson Education Limited, 2004.
[4] D. Fluss, The Real-Time Contact Center. AMACOM, 2005.
[5] V. Chooprayoon and C. Che, “TECTAM: An Approach to Study Technology Acceptance Model (TAM) in Gaining Knowledge on the Adoption and Use of E-Commerce/E-Business Technology among Small and Medium Enterprises in Thailand,” in E-commerce, InTech, 2010, pp. 31–38.
[6] F. D. Davis, “Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Q., vol. 13, no. 3, pp. 319–340, 1989.
[7] M. Chuttur, “Overview of the Technology Acceptance Model: Origins , Developments and Future Directions,” Sprouts Work. Pap. Inf. Syst., vol. 9, no. 2009, pp. 1–23, 2009.
[8] V. Venkatesh and F. D. Davis, “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” Manage. Sci., vol. 46, no. 2, pp. 186–204, Feb. 2000.
[9] M. Y. Wu, H. P. Chou, Y. C. Weng, and Y. H. Huang, “TAM2-based study of website user behavior-using web 2.0 websites as an example,” WSEAS Trans. Bus. Econ., vol. 8, no. 4, pp. 133–151, 2011.
[10] W. G. Chismar and S. Wiley-Patton, “Does the extended technology acceptance model apply to physicians,” Proc. 36th Annu. Hawaii Int. Conf. Syst. Sci. HICSS 2003, 2003.
[11] G. Hart, M., & Porter, “The Impact of Cognitive & Other Factors on the Perceived Usefulness of OLAP.,” J. Comput. Inf. Syst., vol. 45, no. 1, pp. 47–56, 2004.
[12] C.-H. Tsai, “Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems,” Int. J. Environ. Res. Public Health, vol. 11, no. 5, pp. 4905–4925, 2014.
[13] I. T. J. Brown, “Individual and technological factors affecting perceived ease of use of Web-based learning technologies in a developing country,” Electron. J. Inf. Syst. Dev. Ctries., vol. 9, no. 5, pp. 1–15, 2002.
[14] V. Venkatesh and F. D. Davis, “A Model of the Antecedents of Perceived Ease of Use: Development and Test,” Decis. Sci., vol. 27, no. 3, pp. 451–481, 1996.
[15] M. S. Khairi and Z. Baridwan, “An empirical study on organizational acceptance of new information systems in a commercial bank environment,” Int. J. Account. Bus. Soc., vol. 23, no. 1, pp. 97–121, 2015.
[16] S. R. N. P. Sari, “Analisis Model Penerimaan Pengguna Knowledge Management System (KMS) pada PT. Samsung R&D Institute Indonesia (SRIN),” Bina Nusantara University, 2017.
[17] S. Kamel and A. Hassan, “Assessing the Introduction of Electronic Banking in Egypt Using the Technology Acceptance Model,” J. Cases Inf. Technol., vol. 5, no. 1, pp. 1–25, 2003.
[18] W. Money and A. Turner, “Application of the technology acceptance model to a knowledge management system,” 37th Annu. Hawaii Int. Conf. Syst. Sci. 2004. Proc., vol. 0, no. C, p. 9 pp., 2004.
[19] A. A. Hamid, F. Z. A. Razak, A. A. Bakar, and W. S. W. Abdullah, “The Effects of Perceived Usefulness and Perceived Ease of Use on Continuance Intention to Use E-Government,” Procedia Econ. Financ., vol. 35, no. October 2015, pp. 644–649, 2016.
[20] M. McGee, A. Rich, and J. Dumas, “Understanding the Usability Construct: User-Perceived Usability,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 48, no. 5, pp. 907–911, 2004.
[21] C. M. Ringle, S. Wende, and J.-M. Becker, “SmartPLS 3,” SmartPLS GmbH, 2015. [Online]. Available: https://www.smartpls.com/. [Accessed: 06-Feb-2018].
[22] C.-C. Huang, T.-C. Lin, and J.-W. Wang, “Understanding Knowledge Management System Usage Antecedents: An Integration of Social Cognitive Theory and Task Technology Fit,” Inf. Manag., vol. ., 2008.
[23] J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a Silver Bullet,” J. Mark. Theory Pract., vol. 19, no. 2, pp. 139–152, 2011.
[24] P. D. I. Ghozali and H. Latan, PARTIAL LEAST SQUARES KONSEP, TEKNIK DAN APLIKASI Menggunakan Program SmartPLS 2.0 M3. Badan Penerbit Universitas Diponegoro Semarang, 2015.
[25] J. F. J. Hair, G. T. M. Hult, C. Ringle, and M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), vol. 46, no. 1–2. 2014.
[26] G. D. Garson, Partial Least Squares: Regression & Structural Equation Models. 2016.
[27] J. Hartono, Metodologi Penelitian Bisnis: Salah Kaprah dan Pengalaman-Pengalaman (Edisi 6). BPFE Yogyakarta, 2010.
[28] A. Tiwana, Knowledge Management Toolkit. 1999.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish articles in JUTEI agree on the following rules:
1. The author grants non exclusive royalty free rights, and is willing to publish articles online and complete (full access). With such rights JUTEI reserves the right to save, transfers, manages in various forms, maintains and publishes articles while keeping the author's name as the copyright owner.
2. Each author contained in the article has contributed fully to the substance and intellectual, and is accountable to the public. If in the future there is a copyright infringement notification then this will be responsibility of the author, not JUTEI.