ANALISIS SEGMENTASI PELANGGAN MENGGUNAKAN KOMBINASI RFM MODEL DAN TEKNIK CLUSTERING
DOI:
https://doi.org/10.21460/jutei.2018.21.76Keywords:
cluster segmentation, data mining, clustering, CRISP-DM, RFM-model, K-MeansAbstract
Intisari – Persaingan yang ketat di bidang bisnis memotivasi sebuah usaha kecil dan menengah (UKM) untuk mengelola pelayanan terhadap konsumen tetap (pelanggan) secara maksimal. Meningkatkan kesetiaan pelanggan dengan mengelompokkan pelanggan menjadi beberapa kelompok dan menentukan strategi pemasaran yang tepat dan efektif untuk setiap kelompok. Segmentasi pelanggan dapat dilakukan melalui pendekatan data mining dengan metode clustering. Tujuan utamanya segmentasi pelanggan dan mengukur kesetiaan mereka terhadap sebuah produk UKM. Dengan menggunakan metode CRISP-DM yang terdiri dari enam fase, yakni pemahaman bisnis (business understanding), pemahaman data (data understanding), persiapan data (data preparation), pemodelan (modelling), evaluasi (evaluation), dan penerapan (deployment). Algoritma K-means digunakan untuk pembentukan klaster dan RapidMiner sebagai tool yang digunakan untuk mengevaluasi klaster-klaster yang terbentuk. Pembentukan klaster didasarkan pada analisa RFM ( Recency, Frequency, dan Monetary). Davies Bouldin Index (DBI) digunakan untuk menemukan jumlah cluster (k) yang optimal. Hasilnya kelompok pelanggan yang terbentuk ada tiga kelompok dengan kelompok pertama berjumlah 30 pelanggan masuk dalam kategori typical customer, kelompok kedua terdapat 8 pelanggan yang masuk dalam kategori superstar dan kelompok ketiga berjumlah 89 pelanggan pada kategori dormant customer.
References
[2] W. Bi, M. Cai, M. Liu, and G. Li, “A Big Data Clustering Algorithm for Mitigating the Risk of Customer Churn,” IEEE Trans. Ind. Informatics, vol. 12, no. 3, pp. 1270–1281, 2016.
[3] Y. Chen, G. Zhang, D. Hu, and S. Wang, “Customer Segmentation in Customer Relationship Management Based on Data Mining,” vol. 207, pp. 288–293, 2006.
[4] I. Soesanti, “Web-Based Monitoring System on the Production Process of Yogyakarta Batik Industry,” J. Theor. Appl. Inf. Technol., vol. 87, no. 1, pp. 146–152, 2016.
[5] Y. Luo, Q. R. Cai, H. X. Xi, Y. J. Liu, and Z. M. Yu, “Telecom customer segmentation with K-means clustering,” ICCSE 2012 - Proc. 2012 7th Int. Conf. Comput. Sci. Educ., no. Iccse, pp. 648–651, 2012.
[6] D. Zheng, “Application of silence customer segmentation in securities industry based on fuzzy cluster algorithm,” J. Inf. Comput. Sci., vol. 10, no. 13, pp. 4337–4347, 2013.
[7] R. J. Kuo, S. H. Lin, and Z.-Y. Chen, “Integration of Particle Swarm Optimization and Immune Genetic Algorithm-Based Dynamic Clustering for Customer Clustering,” Int. J. Artif. Intell. Tools, vol. 24, no. 5, p. 1550019, 2015.
[8] W. Li, “Modified K-Means Clustering Algorithm,” 2008 Congr. Image Signal Process., pp. 618–621, 2008.
[9] N. Kurinjivendhan and K. Thangadurai, “Modified k-means algorithm and genetic approach for cluster optimization,” Proc. 2016 Int. Conf. Data Min. Adv. Comput. SAPIENCE 2016, pp. 53–56, 2016.
[10] M. K. Algorithm and B. D. Clustering, “IBAIS University,” 2015.
[11] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010.
[12] J. Wei, S. Lin, and H. Wu, “A review of the application of RFM model,” African J. Bus. Manag., vol. 4, no. 19, pp. 4199–4206, 2010.
[13] Y. J. Lee, “Privacy-preserving Data Mining for Personalized Marketing,” Int. J. Comput. Commun. Networks, vol. 4, no. 1, pp. 1–9, 2014.
[14] A. X. Yang, “How to develop new approaches to RFM segmentation,” J. Targeting, Meas. Anal. Mark., vol. 13, no. 1, pp. 50–60, 2004.
[15] C. Wang, “Robust Segmentation for the Service Industry Using Kernel Induced Fuzzy Clustering Techniques,” Proc. 2009 IEEE IEEM, pp. 2197–2201, 2009.
[16] R. Ait Daoud, A. Amine, B. Bouikhalene, and R. Lbibb, “Combining RFM model and clustering techniques for customer value analysis of a company selling online,” Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. AICCSA, vol. 2016–July, 2016.
[17] C. Cheng and Y. Chen, “Expert Systems with Applications Classifying the segmentation of customer value via RFM model and RS theory,” Expert Syst. Appl., vol. 36, no. 3, pp. 4176–4184, 2009.
[18] S. M. S. Hosseini, A. Maleki, and M. R. Gholamian, “Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty,” Expert Syst. Appl., vol. 37, no. 7, pp. 5259–5264, 2010.
[19] P. Chapman et al., “Crisp-Dm 1.0,” Cris. Consort., p. 76, 2000.
[20] A. Brandão, E. Pereira, F. Portela, M. F. Santos, A. Abelha, and J. Machado, “Managing Voluntary Interruption of Pregnancy Using Data Mining,” Procedia Technol., vol. 16, pp. 1297–1306, 2014.
[21] S.-C. Huang, E.-C. Chang, and H.-H. Wu, “A case study of applying data mining techniques in an outfitter’s customer value analysis,” Expert Syst. Appl., vol. 36, no. 3, pp. 5909–5915, 2009.
[22] J. Zhao, W. Zhang, and Y. Liu, “Improved K-Means cluster algorithm in telecommunications enterprises customer segmentation,” Proc. 2010 IEEE Int. Conf. Inf. Theory Inf. Secur. ICITIS 2010, pp. 167–169, 2010.
[23] D. Birant, “Data Mining Using RFM Analysis,” in Knowledge-Oriented Applications in Data Mining, Turkey: KImito Funatso, 2011, pp. 91–108.
[24] I. Pranata and G. Skinner, “Segmenting and targeting customers through clusters selection & analysis,” ICACSIS 2015 - 2015 Int. Conf. Adv. Comput. Sci. Inf. Syst. Proc., pp. 303–308, 2016.
[25] K. Tsiptsis, Data Mining Tehniques in CRM: Inside Customer Segmentation. 2010.
[26] S. Singh Raghuwanshi and P. Arya, “Comparison of K-means and Modified K-mean algorithms for Large Data-set,” Int. J. Comput. Commun. Netw., vol. 1, no. 3, pp. 106–110, 2012.
[27] R. V. Singh and M. P. S. Bhatia, “Data clustering with modified K-means algorithm,” Int. Conf. Recent Trends Inf. Technol. ICRTIT 2011, pp. 717–721, 2011.
[28] B. Yi, F. Yang, H. Qiao, and C. Xu, “An improved initialization center algorithm for K-means clustering,” 2010 Int. Conf. Comput. Intell. Softw. Eng. CiSE 2010, no. 1, pp. 1–4, 2010.
[29] T. Widiyaningtyas, M. Indra, W. Prabowo, and M. A. M. Pratama, “Implementation of K-Means Clustering Method to Distribution of High School Teachers,” no. September, pp. 19–21, 2017.
[30] K. Singh, D. Malik, and N. Sharma, “Evolving limitations in K-means algorithm in data mining and their removal,” IJCEM Int. J. Comput. Eng. Manag. ISSN, vol. 12, no. April, pp. 2230–7893, 2011.
[31] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, 1987.
[32] T. Handhayani, I. Wasito, M. Sadikin, and A. I. K-means, “Kernel Based Integration of Gene Expression and DNA Copy Number,” pp. 978–979, 2013.
[33] T. Hardiani, S. Sulistyo, and R. Hartanto, “Segmentasi Nasabah Tabungan Menggunakan Model RFM ( Recency , Frequency , Monetary ) dan K-Means Pada Lembaga Keuangan Mikro ISBN : 979-26-0280-1 ISBN : 979-26-0280-1,” Semin. Nas. Teknol. Inf. dan Komun. Terap., no. May 2017, pp. 463–468, 2015.
[34] H. Qiao and B. Edwards, “A data clustering tool with cluster validity indices,” ICC2009 - Int. Conf. Comput. Eng. Sci. Inf., vol. 1, no. 2, pp. 303–309, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish articles in JUTEI agree on the following rules:
1. The author grants non exclusive royalty free rights, and is willing to publish articles online and complete (full access). With such rights JUTEI reserves the right to save, transfers, manages in various forms, maintains and publishes articles while keeping the author's name as the copyright owner.
2. Each author contained in the article has contributed fully to the substance and intellectual, and is accountable to the public. If in the future there is a copyright infringement notification then this will be responsibility of the author, not JUTEI.