Pengembangan Telegram Chatbot Informasi Mahasiswa Menggunakan Wit.ai

Authors

  • (*) Varrel Joey Ferelestian,  Universitas Kristen Duta Wacana
  • Budi Susanto,  Informatika,Universitas Kristen Duta Wacana
  • I Kadek Dendy Senapartha,  Informatika,Universitas Kristen Duta Wacana

(*) Corresponding Author

DOI:

https://doi.org/10.21460/jutei.2023.72.257

Keywords:

Telegram, Chatbot, Wit.ai

Abstract

Messenger has become a medium that is widely used by humans to communicate and exchange information. Telegram is one of the most widely used Messengers. Telegram has a chatbot feature. Chatbot speeds up receiving information from websites to users. Receiving information through the website requires several steps to obtain information, while chatbots only need requests from users in the form of text. In this study, a Telegram chatbot will be created using Natural Language Processing (NLP) which focuses on several tasks such as Natural Language Understanding (NLU) and Natural Language Generation (NLG). The chatbot training will use the cloud vendor Wit.ai Natural Language Processing (NLP) service. The results of this study are chatbots trained using the Wit.ai NLP Service cloud vendor can process requests from users and provide responses to users according to previously requested information in a short time. The answers given by the chatbot have an accuracy rate above 0.6.

References

E. Handoyo, M. Arfan, Y. A. A. Soetrisno, M. Somantri, A. Sofwan, and E. W. Sinuraya, “Ticketing Chatbot Service using Serverless NLP Technology,” Proc. - 2018 5th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2018, pp. 325–330, 2018, doi: 10.1109/ICITACEE.2018.8576921.

A. A. Qaffas, “Improvement of Chatbots Semantics Using Wit.ai and Word Sequence Kernel: Education Chatbot as a Case Study,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 3, pp. 16–22, 2019, doi: 10.5815/ijmecs.2019.03.03.

A. M. Rahman, A. Al Mamun, and A. Islam, “Programming challenges of chatbot: Current and future prospective,” 5th IEEE Reg. 10 Humanit. Technol. Conf. 2017, R10-HTC 2017, vol. 2018-Janua, pp. 75–78, 2018, doi: 10.1109/R10-HTC.2017.8288910.

M. Aleedy, H. Shaiba, and M. Bezbradica, “Generating and analyzing Chatbot responses using natural language processing,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 9, pp. 60–68, 2019, doi: 10.14569/ijacsa.2019.0100910.

A. A. Chandra, V. Nathaniel, F. R. Satura, F. Dharma Adhinata, and P. Studi, “Pengembangan Chatbot Informasi Mahasiswa Berbasis Telegram dengan Metode Natural Language Processing,” J. ICTEE, vol. 3, no. 1, pp. 20–27, 2022.

B. F. Alfiat, P. Eosina, S. Hidayat, and A. Ikhsan, “Perancangan Aplikasi Chatbot Menggunakan Wit . Ai pada Sistem SPP-IRT,” vol. 6, no. 4, pp. 785–794, 2022.

A. M. McTear, “Synthesis Lectures on Human Language Technologies," in Conversational AI: Dialogue systems, conversational agents, and chatbots,” pp. 1–23, 2016.

B. Stephan et al., “Intent Identification and Analysis for User-centered Chatbot Design : A Case Study on the Example of Recruiting Chatbots in Germany,” CENTRIC 2020 Thirteen. Int. Conf. Adv. Human-oriented Pers. Mech. Technol. Serv., vol. 13, no. c, pp. 1–10, 2020.

E. Adamopoulou and L. Moussiades, An Overview of Chatbot Technology, vol. 584 IFIP. Springer International Publishing, 2020.

I. A. S. Mckie and B. Narayan, “Enhancing the Academic Library Experience with Chatbots: An Exploration of Research and Implications for Practice,” J. Aust. Libr. Inf. Assoc., vol. 68, no. 3, pp. 268–277, 2019, doi: 10.1080/24750158.2019.1611694.

M. Zubani, L. Sigalini, I. Serina, and A. E. Gerevini, “Evaluating different Natural Language Understanding services in a real business case for the Italian language,” Procedia Comput. Sci., vol. 176, pp. 995–1004, 2020, doi: 10.1016/j.procs.2020.09.095.

Downloads

Published

2023-10-31

How to Cite

[1]
V. Joey Ferelestian, B. Susanto, and I. K. D. Senapartha, “Pengembangan Telegram Chatbot Informasi Mahasiswa Menggunakan Wit.ai”, JUTEI, vol. 7, no. 2, pp. 89–97, Oct. 2023.

Most read articles by the same author(s)